

January 31, 2025

TRI-COUNTY SCHOOL CORPORATION – JR-SR HIGH SCHOOL ADDITION AND RENOVATIONS Wolcott, IN 47995

TO: ALL BIDDERS OF RECORD

This Addendum forms a part of and modifies the Bidding Requirements, Contract Forms, Contract Conditions, the Specifications, and the Drawings dated December 20, 2024, by Gibraltar Design. Acknowledge receipt of the Addendum in the space provided on the Bid Form. Failure to do so may subject the Bidder to disqualification.

This Addendum consists of Pages ADD 1-1 through ADD 1-2, GEO Tech Report, and attached Addendum No. 1 from Gibraltar Design dated January 30, 2025, consisting of 3 pages and 8 drawings.

A. SPECIFICATION SECTION 00 00 20 - TABLE OF CONTENTS

1. Add:

Specification Section 00 20 00 - Information Available to Bidders.

B. <u>SPECIFICATION SECTION 01 12 00 - MULTIPLE CONTRACT SUMMARY</u>

Under 3.03 Bid Categories

C. BID CATEGORY NO. 03 - METAL STUD/DRYWALL/CEILINGS

1. Delete:

Specification Section 09 72 16 - Fabric Wall Covering

D. BID CATEGORY NO. 04 - PAINTING

1. **Add:**

Specification Section 09 72 16 - Fabric Wall Covering

SECTION 00 20 00 - INFORMATION AVAILABLE TO BIDDERS

- A. Subsurface Investigation Information: The Soils Exploration Report and Soil Boring Logs were prepared for the Owner by <u>Alt & Witzig Engineering, Inc., 4105 West 99th Street,</u> <u>Carmel, IN 46032, (317) 875-7000</u>, for use in design. The following Subsurface Investigation Report is not a part of the construction Contract Documents and is enclosed within this document for informational use only. The Architect/Engineer and Construction Manager do not accept responsibility for the information contained in the report.
 - 1. The enclosed report and Log of Borings, and any interpolations of conditions between test borings is not a warrant or guarantee by the Owner or Architect/Engineer of subsurface conditions.
 - 2. The Contractor should visit the site and acquaint himself with all existing conditions. Prior to bidding, bidders may make their own subsurface investigations to satisfy themselves as to the site and subsurface conditions, but such subsurface investigations shall be performed only under the time schedules and arrangements approved in advance by the Owner. Any additional information, needed by the Contractor, shall be obtained by the Contractor at no cost to the Owner.
 - 3. Structural design has been based on the report and assumes that existing soils are clean and can be compacted and will achieve the densities specified in the earthwork section. It shall be the Contractor's responsibility to determine for himself existing Site and or soil conditions.
- B. Existing Site Survey Information: A Site survey can be found within the construction drawings. It is not however, part of the Construction Contract Documents and is for informational use only. Information found is not a warrant or guarantee by the Owner or Project Consultant. The Contractor should visit the site and acquaint himself with all existing conditions. Any additional information, needed by the Contractor, shall be obtained by the Contractor at no cost to the Owner.
- C. Asbestos Report: The Asbestos Report (if applicable), prepared for the Owner, is not part of the Construction Documents, and is on file at the Owner's Office and is available for review upon written request. The Architect and Construction Manager do not accept responsibility for the information contained in the report.
- D. Lead Based Paint: Lead Based Paint Report (if applicable), prepared for the Owner, is not part of the Construction Documents, and is on file at the Owner's Office and is available for review upon written request. The Architect and Construction Manager do not accept responsibility for the information contained in the report.

END OF SECTION 00 20 00

SUBSURFACE INVESTIGATION & GEOTECHNICAL RECOMMENDATIONS

TRI-COUNTY SCHOOL IMPROVEMENTS WOLCOTT AND REMINGTON, INDIANA A&W PROJECT NO.: 24IN0392

PREPARED FOR: TRI-COUNTY SCHOOL CORPORATION WOLCOTT, INDIANA

PREPARED BY: ALT & WITZIG ENGINEERING, INC. GEOTECHNICAL DIVISION

AUGUST 16, 2024

Alt & Witzig Engineering, Inc.

4105 West 99th Street • Carmel, Indiana • 46032 Ph (317) 875-7000 • Fax (800) 875-6028

August 16, 2024

Tri-County School Corporation 105 North 2nd Street Wolcott, Indiana 47995 Attn: Mr. Patrick Culp, Superintendent

Report of Subsurface Investigation and Geotechnical Recommendations

RE: Tri-County School Improvements 200 West North Street, 11298 West 100 South, and 300 East Michigan Street Wolcott and Remington, Indiana *Alt & Witzig File: 24IN0392*

Dear Mr. Culp:

In compliance with your request, we have conducted a subsurface investigation and geotechnical evaluation for the above referenced projects. It is our pleasure to transmit an electronic copy of the report.

The purpose of this subsurface investigation was to determine the various soil profile components, the engineering characteristics of the subsurface materials, and to provide criteria for use by the design engineers in assessing the sites for construction, preparation of site grading plans, and determination of appropriate foundation types. A detailed discussion of our subsurface investigation results and recommendations are presented herein.

We appreciated the opportunity to work with you on these projects. Often, because of design and construction details that occur on a project, questions arise concerning the soil conditions. If we can give further service in these matters, please contact us at your convenience.

Sincerely, Alt & Witzig Engineering, Inc.

Tlicholas Home

Nicholas K. Hayes, E.I.

W/K

Jacob L. Rankin, M. Eng., P.E.

Subsurface Investigation and Foundation Engineering Construction Materials Testing and Inspection Environmental Services

TABLE OF CONTENTS

INTRODUCTION	1
DESCRIPTION OF SITES	2
FIELD INVESTIGATION	5
LABORATORY INVESTIGATION	6
SUBSURFACE CONDITIONS	7
GEOTECHNICAL ANALYSIS AND RECOMMENDATIONS	11
CONSTRUCTION CONSIDERATIONS	16
STATEMENT OF LIMITATIONS	18

APPENDIX A

Recommended Specifications for Compacted Fills and Backfills Undercut Detail for Footing Excavation in Unstable Materials Benching Diagram Boring Location Plan Boring Logs General Notes

APPENDIX B

Seismic Design Parameters Custom Soil Resource Report for White County, Indiana and Jasper County, Indiana

INTRODUCTION

This report presents the results of a subsurface investigation performed for the proposed improvements to three (3) separate Tri-County Schools in Wolcott and Remington, Indiana. Our investigation was conducted for Tri-County School Corporation of Wolcott, Indiana. Authorization to perform this investigation was in the form of a proposal prepared by Alt & Witzig Engineering, Inc. (Alt & Witzig Proposal: 2406G011) that was accepted by Joseph P. Briggs of Gibraltar Design.

The scope of this investigation included a review of geological maps of the areas and a review of geologic and related literature, a reconnaissance of the immediate sites, a subsurface exploration at each site, field and laboratory testing, and an engineering analysis and evaluation of the materials.

The purpose of this subsurface investigation was to determine the various soils profile components, the engineering characteristics of the subsurface materials, and to provide criteria for use in assessing the sites for construction and evaluating subsurface conditions.

The scope or purpose of this investigation did not either specifically or by implication provide an environmental assessment of the sites.

DESCRIPTION OF SITES

The first site is located at Tri-County Intermediate School, at the street address of 200 West North Street in Wolcott, Indiana. An aerial photograph of the site taken in 2018 is provided in *Exhibit 1* below.

Exhibit 1 – 2018 Aerial Photograph of Site; Google Earth (Intermediate School)

The site is relatively flat, with an estimated elevation difference of approximately one (1) foot across the area, with elevations ranging between 718 feet to 719 feet per Google Earth. Ground cover across the site during drilling operations consisted of grass. The immediate surrounding areas are developed with Tri-County Intermediate School, along with associated infrastructure and playgrounds. The surrounding areas are developed with both residential and commercial structures, paved roadways, and underground/overhead utilities.

The second site is located at Tri-County Junior-Senior High School, at the street address of 11298 West 100 South in Wolcott, Indiana. An aerial photograph of the site taken in 2018 is provided in *Exhibit 2* below.

Exhibit 2 – 2018 Aerial Photograph of Site; Google Earth (JR/SR High School)

The proposed area is relatively flat, with an estimated elevation difference of approximately one (1) foot, with elevations ranging between 729 feet to 730 feet per Google Earth. Ground cover across the site during drilling operations consisted of grass. The immediate surrounding areas are developed with Tri-County Junior-Senior High School, along with associated infrastructure and sporting fields. The surrounding areas are developed with residential structures, paved roadways, underground/overhead utilities, and agricultural fields. Also, Mason Eastburn Ditch is located approximately 700 feet south of the site.

The third site is located at Tri-County Primary School, at the street address of 300 East Michigan Street in Remington, Indiana. An aerial photograph of the site taken in 2018 is provided in *Exhibit 3* below.

Exhibit 3 – 2018 Aerial Photograph of Site; Google Earth (Primary School)

The proposed site is sloping down from west to east, with an estimated elevation difference of five (5) feet, with elevations ranging between 725 feet to 730 feet per Google Earth. Ground cover across the site during drilling operations consisted of grass, concrete sidewalk, and asphalt pavement. The immediate surrounding areas are developed with Tri-County Primary School, along with associated infrastructure. The surrounding areas are developed with residential structures, paved roadways, and underground/overhead utilities. Also, a wooded area is present directly to the east, along with Carpenter Creek approximately 200 feet east.

FIELD INVESTIGATION

Boring Locations

Field investigations to determine the engineering characteristics of the subsurface materials included a reconnaissance of the project sites and performing five (5) soil borings at the Intermediate School, three (3) soil borings at the JR/SR High School, and four (4) borings at the Primary School. The boring locations can be located approximately as shown on the *Boring Location Plan*, performing standard penetration tests, and obtaining soil samples retained in the standard spilt-spoon sampler for further laboratory testing. The apparent groundwater level at each boring location was also determined.

Drilling and Sampling Procedures

The soil borings were drilled using a track-mounted drilling rig equipped with a rotary head. Hollowstem augers were used to advance the holes. The advancement of the borings was temporarily stopped at regular intervals in order to perform standard penetration tests in accordance with ASTM Procedure D-1586 to obtain the standard penetration value of the soil.

The standard penetration test involves driving a split spoon soil sampler into the ground by dropping a 140-pound hammer, thirty (30) inches. The number of hammer drops required to advance the split-spoon sampler one (1) foot into the soil is defined as the standard penetration value. The soil samples retained in the split-spoon sampling device as a result of the penetration tests were obtained, classified, and labeled for further laboratory investigation.

Water Level Measurements

The apparent groundwater level at each boring location was measured during and upon completion of the drilling operations, as well as at delayed time intervals.

These water level measurements consisted of observing the depth at which water was encountered on the drilling rods during the soil sampling procedure and measuring the depth to the top of any water following removal of the hollow stem augers. It should be noted that the groundwater level measurements recorded on the individual *Boring Logs* in Appendix A of this report are accurate only for the specific dates on which the measurements were performed. It must be understood that the groundwater levels will fluctuate throughout the year and the *Boring Logs* do not indicate these fluctuations.

LABORATORY INVESTIGATION

In addition to field investigations, a supplemental laboratory investigation was conducted to ascertain additional pertinent engineering characteristics of the subsurface materials. The laboratory-testing program included:

- Classification of soils in general accordance with ASTM D-2488
- Moisture content tests in general accordance with ASTM D-2216
- Samples of the cohesive soil were frequently tested in unconfined compression by use of a calibrated spring testing machine.
- A soil Penetrometer was used as an aid in determining the strength of the soil.

The values of the unconfined compressive strength as determined on soil samples from the split-spoon sampling must be considered, recognizing the manner in which they were obtained since the split-spoon sampling techniques provide a representative but somewhat disturbed soil sample.

SUBSURFACE CONDITIONS

General

The types of foundation materials encountered have been visually classified and are described in detail on the *Boring Logs*. The results of the field penetration tests, strength tests, water level observations and laboratory water contents are presented on the *Boring Logs* in numerical form. Representative samples of the soils encountered in the field were placed in sample jars and are now stored in our laboratory for further analysis if desired. Unless notified to the contrary, all samples will be disposed of after two (2) months.

Soil Conditions

Borings B-01 to B-05 (Intermediate School)

The borings encountered approximately three (3) to four (4) inches of topsoil at the ground surface. Beneath the surface materials, the borings generally encountered medium stiff cohesive soils within the upper four (4) to seven (7) feet. These shallow soils generally exhibited moisture contents between twelve (12) and twenty-two (22) percent. The soils then transitioned to stiff to very stiff cohesive soils to depths ranging between fifteen (15) and nineteen (19) feet. Weathered shale bedrock was encountered at these depths and extended to the termination depths of the borings.

According to the *Soil Survey of White County, Indiana* published by the United States Department of Agriculture Soil Conservation Service, the majority of the natural shallow soil covering this site is classified as Conover loam (CnA).

Borings B-101 to B-103 (JR/SR High School)

The borings encountered approximately two (2) to four (4) inches of topsoil at the ground surface. Beneath the surface materials, the borings generally encountered soft to medium stiff cohesive soils within the upper four (4) to seven (7) feet of the borings. These shallow soils generally exhibited moisture contents between fourteen (14) and twenty-four (24) percent. The soils then transitioned to stiff to very stiff cohesive soils to depths ranging between ten (10) and twenty-four (24) feet. Weathered shale bedrock was then encountered to the termination depths of the borings. It should be noted that boring B-102 encountered a layer of dense granular soil at depths of nineteen (19) to twenty-two (22) feet.

According to the *Soil Survey of White County, Indiana* published by the United States Department of Agriculture Soil Conservation Service, the majority of the natural shallow soil covering this site is classified as Conover loam (CnA) and Wolcott clay loam (Wo).

Borings B-201 to B-204 (Primary School)

The borings encountered approximately three (3) to five (5) inches of topsoil at the ground surface. Beneath the surface materials, the borings generally encountered possible fill and fill materials, consisting of cohesive soils, within the upper four (4) to six (6) feet. It should noted that boring B-204 encountered brick debris within the fill materials. Beneath this layer, the borings generally encountered medium stiff to very stiff cohesive soils to the termination depths of the borings. Borings B-201, B-202, and B-203 encountered layers of silt soils at depths of nineteen (19) to thirty-one (31) feet.

According to the *Soil Survey of Jasper County, Indiana* published by the United States Department of Agriculture Soil Conservation Service, the majority of the natural shallow soil covering this site is classified as Corwin loam (CoB) and Sloan silt loam (So).

Detailed soil descriptions at each boring location have been included on the *Boring Logs* in Appendix A of this report. The Custom Soil Resource Reports for Johnson County and Jasper County, Indiana has been included in Appendix B.

Bedrock Geology

Borings B-01 to B-05 (Intermediate School)

Geologic maps published by the Indiana Geological Survey indicate the bedrock at this site consists of the New Albany Group, which is characterized by shale, dolomite, and sandstone of the Devonian/Mississippian age. The approximate elevation of this bedrock is 700 feet. As mentioned, bedrock was encountered as shallow as fifteen (15) feet.

Borings B-101 to B-103 (JR/SR High School)

Geologic maps published by the Indiana Geological Survey indicate the bedrock at this site consists of the New Albany Group, which is characterized by shale, dolomite, and sandstone of the Devonian/Mississippian age. The approximate elevation of this bedrock is between 700 and 750 feet. As mentioned, bedrock was encountered as shallow as ten (10) feet.

Borings B-201 to B-204 (Primary School)

Geologic maps published by the Indiana Geological Survey indicate the bedrock at this site consists of the New Albany Group, which is characterized by shale, dolomite, and sandstone of the Devonian/Mississippian age. The approximate elevation of this bedrock is 700 feet. It should be noted that bedrock was not encountered in the borings for the Primary School.

Seismic Design Considerations

Borings B-01 to B-05 (Intermediate School)

Based on the field and laboratory tests performed on the subsurface materials and the encountered bedrock within fifteen (15) to twenty (20) feet of the existing ground surface, this site should be considered a Site Class C in accordance with the current Indiana Building Code.

The location of the site was entered into the website <u>www.seismicmaps.org</u> to determine seismic parameters. Maximum spectral response acceleration values of Ss=0.128 and $S_1=0.073$ g were generated by the program.

Borings B-101 to B-103 (JR/SR High School)

Based on the field and laboratory tests performed on the subsurface materials and the encountered bedrock within ten (10) to twenty-four (24) feet below the existing ground surface, this site should be considered a Site Class C in accordance with the current Indiana Building Code.

The location of the site was entered into the website <u>www.seismicmaps.org</u> to determine seismic parameters. Maximum spectral response acceleration values of Ss=0.167 and $S_1=0.089$ g were generated by the program.

Borings B-201 to B-204 (Primary School)

Based on the field and laboratory tests performed on the subsurface materials and an assumption that the bedrock surface is greater than thirty (30) feet below the existing ground surface, this site should be considered a Site Class C in accordance with the current Indiana Building Code.

The location of the site was entered into the website <u>www.seismicmaps.org</u> to determine seismic parameters. Maximum spectral response acceleration values of Ss=0.130 and $S_1=0.074$ g were generated by the program.

Additional parameters are included in the printout in Appendix B for each school.

Groundwater

Tables 1, 2 and 3 below indicate the groundwater depths as encountered during and upon completion of the boring operations. The exact location of the water table may fluctuate somewhat depending upon normal seasonal variations in precipitation and surface runoff.

Boring	During	Upon
ID	Drilling	Completion
B-01	20.0 ft.	15.0 ft.
B-02	21.0 ft.	
B-03	Dry	Dry
<i>B-04</i>	27.0 ft.	10.0 ft.
B-05	Dry	Dry

Table 1-Groundwater Depths (Intermediate School)

Table 2–	Groundwater	Depths	(JR/SR	High	School)
		I	1 - · · -		

Boring	During	Upon
ID	Drilling	Completion
B-101	Dry	Dry
<i>B-102</i>	7.5 ft.	7.0 ft.
<i>B-103</i>	9.0 ft.	

1 dele e Gloundan diel Depinis (1 minut, Sentool)

Boring	During	Upon
ID	Drilling	Completion
B-201	19.0 ft.	12.5 ft.
B-202	Dry	Dry
B-203	14.0 ft.	12.0 ft.
B-204	Dry	Dry

The *Soil Survey of White County and Jasper County, Indiana* indicates a seasonal high groundwater table as shallow as the natural ground surface. Again, it should be noted that the groundwater level measurements recorded on the individual *Boring Logs* included in Appendix B of this report, are accurate **only** for the dates on which the measurements were performed.

GEOTECHNICAL ANALYSIS & RECOMMENDATIONS

Project Description

It is anticipated that the proposed additions and improvements to the three (3) schools will be one to two-story, slab-on-grade additions. Also, it is understood that new pavements will be constructed. The location of the soil borings in relation to the layout of the sites are shown on the enclosed *Boring Location Plans*.

Grading plans were not available at the time of this report. It is assumed that finished grade will match the existing structures.

Approximate structural loads were not available at the time of this report. It is assumed that structural loads for the building will be transferred to the soils by spread footings and continuous wall footings founded at a shallow depth, if possible. It is assumed that the additions will experience maximum column loads in the range of 100-150 kips and wall loads of 2-4 klf. Once final design loads and grading plans are available, they should be submitted to Alt & Witzig Engineering, Inc. for review. After a review of this information, it will be determined if changes to these recommendations are warranted.

Existing Structure/Utility Concerns

As previously mentioned, the existing school buildings and associated infrastructure currently occupy each of the sites. Shallow, uncontrolled fills may be evident from activities associated with past construction. Care should be taken to properly abandon any existing utilities located in the area of the additions. At no time should new foundations be placed on or above abandoned utilities. Some loose fill materials should be anticipated in areas of the utilities. It is further recommended that if backfilling is required, a representative of Alt & Witzig Engineering, Inc. be present to assure that proper compaction is achieved.

Adjacent Foundations

New foundations to be placed near or adjacent to existing foundations should be constructed such that undermining of adjacent footings and lateral loading of footings located at a different elevation is avoided. If it is necessary to construct the new foundations within the "influence area" of the existing

structures, shoring or underpinning of the existing structures will be necessary to allow for construction. The lateral loads applied by the existing footing should be considered in design of the proposed foundation. This investigation did not include the evaluation of the existing structures or foundation systems. Caution must be exercised during construction to not undermine existing foundations or jeopardize the integrity of the existing structures.

Foundation Recommendations

Considering the encountered soil conditions at the boring locations, the estimated loads of the structure, and the relative economics of the available foundation types, conventional spread and continuous wall footings founded at a shallow depth appear to represent a feasible foundation solution for this project.

Intermediate School

The borings encountered medium stiff cohesive soils near the anticipated footing depth. Therefore, net allowable bearing pressures of **2,000** and **1,600 psf** are recommended for dimensioning spread footings and continuous wall footings, respectively, provided they are founded on firm natural soil or properly compacted structural fill. Isolated undercuts may be necessary if unsuitable soils are encountered during the foundation excavations.

JR/SR High School

The borings encountered soft to medium stiff cohesive soils near the anticipated footing depth. Therefore, net allowable bearing pressures of **2,000** and **1,600 psf** are recommended for dimensioning spread footings and continuous wall footings, respectively, provided they are founded on firm natural soil or properly compacted structural fill. Isolated undercuts may be necessary where soft or unsuitable soils are encountered near the proposed foundation depth.

Primary School

As mentioned, the borings encountered fill and possible fill materials at the anticipated footing depths. Net allowable bearing pressures of **2,000** and **1,600 psf** are recommended for dimensioning spread footings and continuous wall footings, respectively, provided they are founded on the medium stiff soils or properly compacted structural fill. Isolated undercuts may be necessary where soft soils are encountered at or near the proposed foundation depth, such as in borings B-201 and B-203.

As mentioned, the Primary School site slopes down from west to east. It will be important to consider the slope of the hill when adding fill materials to establish the final grade. Benching of fill materials is outlined later in this report.

General

It is recommended that a representative of Alt & Witzig Engineering, Inc. inspect all foundation excavations prior to the placement of concrete. At the time of this inspection, Housel penetrometer or other approved tests may be performed in order to confirm that suitable materials are present.

The above recommended bearing pressures will help reduce differential settlements associated with footings founded on soil with varying stiffness across the building pad. Using the above-mentioned bearing pressure and recommendations for limiting settlements, total settlements of less than one (1) inch and differential settlements of one half ($\frac{1}{2}$) inch or less can be anticipated. In utilizing the above-mentioned net allowable pressures for dimensioning footings, it is necessary to consider only those loads applied above the finished floor elevation.

In order to alleviate the effects of seasonal variation in moisture content on the behavior of the footings and eliminate the effects of frost action, all exterior foundations should be founded a minimum of three (3) feet below the final grade.

Some modifications to the recommendations provided in this report may be necessary based on potential complications or modifications to the design plan. The modifications may influence the overall cost of the project and construction sequence. If complications become apparent to the design team or owner, this information should be provided to Alt & Witzig Engineering, Inc. at the earliest possible date.

Floor Slab Recommendations

It is typically desirable to place the floor slab as a slab-on-grade supported by the soil. In the areas where the existing grade is above the final floor elevation, the building area should be undercut and a well-draining granular material placed beneath the slab. In those areas where the existing grade is below the final floor elevation, a well-compacted structural fill will be necessary to raise the site to the desired grade. All fill materials may consist of approved materials if proper moisture content and compaction procedures are maintained.

Prior to elevating the sites, all surface materials should be stripped from the site. The subgrade soils must then be proofrolled with approved equipment. It is recommended that a representative of Alt & Witzig Engineering, Inc. be present to determine the exact depth of undercutting and to monitor backfilling operations if necessary. Areas of shallow unstable materials should be anticipated in most areas due to elevated moisture contents and encountered fill materials. The exact remediation method used will be dependent upon the size of the area and the types of materials encountered, as well as the project schedule. If weather conditions are favorable, the soils may be aerated, dried, and recompacted or undercut and replaced. However, if weather conditions or construction schedule dictate immediate improvement then undercutting and replacement or chemical modification may be necessary. Remediation will be dictated by the field conditions upon construction.

After the building area has been raised to the proper elevation, a layer of well-draining granular material should be placed immediately beneath all floor slabs. It is recommended that the materials within the subgrade area, above footing elevation, be compacted to a minimum density of 93 percent of maximum density in accordance with ASTM D-1557.

Pavement Subgrade Preparations

The strength of the subgrade soils at this site depends upon several variables including compaction and drainage. It is, therefore, extremely important that all paved areas be designed to prevent water from collecting or ponding immediately beneath the pavement. This can be accomplished by sheet draining the parking area and sloping the subgrade soils and outletting them to a drain or a ditch to allow for subgrade drainage, or by the installation of a subsurface drainage system. It is recommended that underdrains be installed at the transitions from concrete to asphalt as well.

For these soils to provide adequate support for pavement, it will also be necessary that the earthmoving contractor follow proper site work techniques. The exposed subgrade should be proof-rolled with equipment approved by a representative of Alt & Witzig Engineering, Inc. This proof-rolling will assist in identifying pockets of soft unstable materials beneath exposed subgrades. As mentioned before, areas of shallow unstable materials should be anticipated due to elevated moisture contents and the encountered fill materials. The exact remediation method used will be dependent upon the size of the area and the types of materials encountered, as well as the project

schedule. If weather conditions are favorable, the soils may be aerated, dried, and recompacted or undercut and replaced. However, if weather conditions or construction schedule dictate immediate improvement then undercutting and replacement or chemical modification may be necessary. Remediation will be dictated by the field conditions upon construction.

In areas where fill will be required to raise the site to proposed grade, the performance of the pavements will be greatly affected by the quality of compaction achieved in the subgrade soils. Thus, it is recommended that all pavement areas be compacted to 93 percent of the material's maximum dry density as determined by ASTM D-1557.

CONSTRUCTION CONSIDERATIONS

Site Preparation

Excessively organic topsoil and loose dumped fill materials will generally undergo high volume changes that are detrimental to the behavior of floor slabs, structural fills, and foundations placed upon them. It is recommended that all topsoil and/or loose materials be stripped from the construction areas and wasted or stockpiled for later use.

The depth and consistency of these materials will vary across the site. It should be noted that the soil borings only indicate the apparent topsoil, asphalt, concrete, and stone thickness at their specific locations. Borings do not indicate variations in the thickness of these layers between selected locations. Thus, borings only provide a general indication of the amount of stripping.

The condition of the subgrade at the time of earthmoving operations and the methods used by the contractor will influence the depth of stripping. A representative of Alt & Witzig Engineering, Inc. in the field should determine the exact depth of stripping and undercutting at the time of stripping operations.

It is recommended that after the above-mentioned stripping procedures have been performed, the exposed subgrade should be proofrolled with approved equipment. This proofrolling will determine where areas of soft unsuitable materials are encountered. Due to the elevated moisture contents encountered in natural cohesive soils and the encountered fill materials, it is anticipated that some subgrade soils will not favorably pass a proofroll inspection. It is recommended that a representative of Alt & Witzig Engineering, Inc. be present for this phase of this project.

After the existing subgrade soils are excavated to design grade, proper control of subgrade compaction and fill, and structural fill replacement should be maintained in accordance with the *Recommended Specifications for Compacted Fills and Backfills*, presented in Appendix A of this report; thus minimizing volume changes and differential settlements which are detrimental to behavior of shallow foundations, floor slabs, and pavements.

Benched Fills (Primary School)

Given the existing relief, it may be necessary to properly integrate these fills with the natural topography to avoid the creation of a slip surface leading to potential slope instability by benching the fills into the natural hillside. Benches should be of sufficient width to accommodate the required compaction equipment (minimum 10 feet). Benching of natural slopes and existing embankments slopes steeper than 4H:1V should be performed in accordance with Section 203.21 of the INDOT Standard Specifications and the *Benching Diagram* in Appendix A. Finished earth slopes shall not exceed 3H:1V if the slope will be finished with grass that is to be mowed. Slopes steeper than 3:1 may be possible with special consideration to erosion control and slope stability.

Rock Excavations

The soil borings indicate the presence of weathered shale bedrock. During drilling, slow penetration rates were achieved within the weathered rock and hard residual soils. It is anticipated that large excavators with rippers will be necessary to provide initial loosening of the bedrock. Deeper excavation into the bedrock should be anticipated to require jackhammering or blasting.

Groundwater

Depending upon the time of the year and the weather conditions when the excavations are made, seepage from surface runoff may occur into shallow excavations or soften the subgrade soils. Since these foundation materials tend to loosen when exposed to free water, every effort should be made to keep the excavations dry should water be encountered. Sump pumps or other conventional dewatering procedures should be sufficient for this purpose within the cohesive soils. Significant dewatering should be expected if excavations penetrate groundwater within a wet sand layer.

It is also recommended that all concrete for footings be poured the same day as the excavation is made.

STATEMENT OF LIMITATIONS

This report is solely for the use of Tri-County School Corporation and any reliance of this report by third parties shall be at such party's sole risk and may not contain sufficient information for purposes of other parties for other uses. This report shall only be presented in full and may not be used to support any other objectives than those set out in the scope of work, except where written approval and consent are provided by Tri-County School Corporation and Alt & Witzig Engineering, Inc.

An inherent limitation of any geotechnical engineering study is that conclusions must be drawn based on data collected at a limited number of discrete locations. The geotechnical parameters provided in this report were developed from the information obtained from the test borings that depict subsurface conditions only at these specific locations and on the date indicated on the boring logs. Soil conditions at other locations may differ from conditions encountered at these boring locations and groundwater levels shall be expected to vary with time. The nature and extent of variations between the borings may not become evident until the course of construction.

The exploration and analysis reported herein is considered in sufficient detail and scope to form a reasonable basis for initial design. The recommendations submitted are based on the available soil information and assumed design details enumerated in this report. If actual design details differ from those specified in this report, this information should be brought to the attention of Alt & Witzig Engineering, Inc. so that it may be determined if changes in the foundation recommendations are required.

APPENDIX A

Recommended Specifications for Compacted Fills and Backfills Undercut Detail for Footing Excavation in Unstable Materials Benching Diagram Boring Location Plan Boring Logs General Notes

RECOMMENDED SPECIFICATIONS FOR COMPACTED FILLS AND BACKFILLS

All fill shall be formed from material free of vegetable matter, rubbish, large rock, and other deleterious material. Prior to placement of fill, a sample of the proposed fill material should be submitted to Alt & Witzig Engineering, Inc. for approval. The surface of each layer will be approximately horizontal but will be provided with sufficient longitudinal and transverse slope to provide for runoff of surface water from every point. The fill material should be placed in layers not to exceed eight (8) inches in loose thickness. Each layer should be uniformly compacted by means of suitable equipment of the type required by the materials composing the fill. Under no circumstances should a bulldozer or similar tracked vehicles be used as compacting equipment. Material containing an excess of water so the specified compaction limits cannot be attained should be spread and dried to a moisture content that will permit proper compaction. The addition of water may be required if the fill is below moisture content that will permit compaction. All fill should be compacted to the specified percent of the maximum density obtained in accordance with ASTM density Test D-1557 (95 percent of maximum dry density below the base of footing elevation, 93 percent of maximum dry density beneath floor slabs and pavements). Should the results of the in-place density tests indicate that the specified compaction limits are not obtained; the areas represented by such tests should be reworked and retested as required until the specified limits are reached.

Figure 107-6B

CLIENT Tri-Cou				BORING # B-01													
PROJECT NAME	Tri-County Sch	nool Improvement	ts					ALT	& V	VITZIG	FILE #	24IN	10392				
PROJECT LOCATIC	N Wolcott a	and Remington, II	N														
	DRILLING and	SAMPLING INFORM	ATION														
Date Started	7/29/24	Hammer Wt.	14	0 lbs	5.												
Date Completed	7/29/24	– Hammer Drop	3	30 in.													
Boring Method	HSA	Spoon Sampler OD in.															
Driller D. McV	Vherter	Rig Type C	ME 55 AT	ν							tt	<u> </u>					
							e e	aphics iraphics	ter	enetratio ows/foot	onfined e Streng	etromete	ntent % eight (pcf				
STRATA	SOIL CL	ASSIFICATION		രഺ	ھ ے	ple	ple Typ	pler Gr very G	nd Wa	dard P N - blo	sf Unco pressiv	sf iet Pen	ure Co Unit W	arks			
ELEV.	SURFAC	E ELEVATION		Strat	Dept Scale	Sam No.	Sam	Sam	Grou	Stan Test,	Qu-ts Com	PP-ts Pock	Moist Dry (Rem			
		TOPSOIL	/	0.3	-												
	Dark E (/	Brown Silty CLAY Possible Fill)		4.0		1	SS	X		8		2.0	22.4				
	Brown a	nd Grav Silty CLAY			5 -	2	SS			5		0.5	17.0				
	Brown a			7.0	-	3	SS			16		4.5	12.5				
					10 -	4	SS	X		15		2.5	10.3				
	Gray Silty CLAY			17.0		5	SS	X	Ā	36		4.5	8.8				
					20 -	6	SS	X	0	50/2"							
	Gray V	Veathered Shale			25 -	7	SS	X		50/3"							
	End of	Boring at 31 feet		31.0	30 -	8	SS	X		50/2"							
Sample Typ SS - Driven Split Sp ST - Pressed Shelby CA - Continuous Flig RC - Rock Core CU - Cuttings CT - Continuous Tut	n <u>e</u> oon y Tube ght Auger be		O During 및 At Cor	<u>Grou</u> Drillin npletio	<u>undwat</u> g n	<u>er</u> 22	20.0 ft 15.0 ft				ISA - H FA - C IC - D ID - M	Boring ollow S ontinuc riving C lud Drill	<u>y Method</u> Stem Aug Dus Fligh Casing ling	 jers t Augers	1		

CLIENT Tri-County School Corporation								BORING #B-02							
	ri-County Sch	nool Improvemen	Its				_	ALT	& V	VITZIG	FILE #	24IN	10392		
PROJECT LOCATION	Wolcott a	and Remington, I	N												
Date Started	DRILLING and 7/29/24	SAMPLING INFORM Hammer Wt	ATION 14	40 _lbs	5.										
Date Completed	7/29/24	_ Hammer Drop		<u>30</u> in.							TE	ST DA	ST DATA		
Boring Method	HSA	_ Spoon Sampler	OD	2 in.											
Driller <u>D. MCW</u>	herter	Rig Type C	ME 55 AT	<u>rv</u>			be	raphics Braphics	ater	enetration ows/foot	onfined ve Strength	ietrometer	ontent % eight (pcf)		
STRATA	SOIL CL	ASSIFICATION		கட	Ξo	ple	ple Ty	pler G	Ind Wa	dard P N - bl	sf Uno pressi	sf tet Per	ture Co Unit W	arks	
ELEV.	SURFAC	E ELEVATION		Strat Dept	Dept Scale	Sam No.	Sam	Sam	Grou	Stan Test,	Qu-ts Com	PP-ts Pock	Moist Dry	Rem	
		TOPSOIL	[0.3	-					5		2.0 2.0			
	Dark E	Brown Silty CLAY		4.0		1	SS	X					21.9		
	Brown a	od Grav Silty CLAY			5 -	2	SS	X		8			17.2		
			7.0	- - -	3	SS	X		20		4.5	11.2			
					10 -	4	SS	X		12		4.5	9.6		
	Gray Silty CLAY with Gravel					5	SS	X	Ţ	35				Driving on a Rock, No Recovery	
					20 -	6	SS	X	0	50/2"			8.8		
	Gray V	Veathered Shale			25 -	7	SS	X		50/2"					
	End of	Boring at 31 feet		31.0	30 -	8	SS	X		50/3"					
<u>Sample Type</u> SS - Driven Split Spoo ST - Pressed Shelby CA - Continuous Fligh RC - Rock Core	_ on Tube it Auger		O Durin ⊈ At Co	<u>Grou</u> g Drillin mpletio	undwat g n	er	2 <u>1.0 f</u> f	<u>t.</u> <u>t.</u>	L	H C D	ISA - H FA - C C - D 1D - M	Boring ollow S ontinuc riving C lud Drill	Metho tem Au bus Flig Casing ing	ugers ht Augers	
CU - Cuttings CT - Continuous Tube	9		Ţ After	<u>1.5</u> ho	urs <u>1</u>	<u>5.0 ft.</u>	-			Ĩ	1			age 1 of 1	

CLIENT Tri-Co								G#		B-03					
PROJECT NAME _	IN Wolcott a	nd Reminaton. II	<u>is</u> N				_	ALI	& V	VIIZIG	FILE <u>#</u>	2411	10392		
	DRILLING and S	SAMPLING INFORM	ATION												
Date Started	7/29/24	Hammer Wt	14	10 lbs	i.										
Date Completed	7/29/24	Hammer Drop	3	30 in.							TE		гΔ		
Boring Method	HSA	Spoon Sampler	OD	2 in.		[
Driller D. Mc	Wherter	Rig Type C	ME 55 AT	V						Б.,	gth	Ē	cf)		
[]							,pe	traphics Graphics	ater	^o enetrati lows/foot	confined ive Stren	netromet	ontent % /eight (po		
STRATA	SOIL CLA	SSIFICATION			– –	e	le Ty	very (M pr	lard F N - b	f Unc	f et Pel	ure C Init V	arks	
ELEV.	SURFAC	E ELEVATION		Strat <i>a</i> Depth	Depth Scale	Samp No.	Samp	Samp Reco	Grour	Stanc Test,	Qu-ts Comp	PP-ts Pocke	Moistu Dry L	Rema	
		TOPSOIL	ſ	0.3	-	-									
-	Brow	n Clavev SILT			-	1	SS			7	0.5		16.2		
		5.5		10	-	-		Å							
				4.0	-	-									
					5	2	SS	X		15	1.5		14.3		
	Brown Silty CLA	Y with a Trace of Gra	avel		-	-									
						3	SS	X		12	2.2		19.4		
				9.0	-			\square							
	Gray Silt	CLAY with Shale		11.0	- 10 —	4	SS	X		14		2.5	12.9		
	End of	Boring at 11 feet		11.0	-										
Sample Tv	vpe			Groi	Indwat	i l er						Borinc	Metho	d	
SS - Driven Split S ST - Pressed Shel CA - Continuous F RC - Rock Core CU - Cuttings CT - Continuous T	poon by Tube light Auger ube		O Durino ⊈ At Co ▼ After	g Drillin mpletio <u>3.0</u> ho	g n urs _ <i>D</i> i	<u>y</u> ft	<u>Dry fi</u> Dry fi	<u>t.</u> t		H C D M	SA - H FA - C C - D D - N	ollow S ontinuc riving (lud Dril	tem Au bus Flig Casing ling	igers ht Augers	. 4

CLIENT_T	ri-Cou	nty School Co	prporation						BOF	RING	G #		<u>B-0</u>	5		
PROJECT N		ri-County Sc	hool Improvement	ts					ALT	& V	VITZIG	FILE <u>#</u>	241	10392		
PROJECT L	OCATIO	N Wolcott	and Remington, I	N												
		DRILLING and	SAMPLING INFORMA	ATION												
Date Star	ted	7/29/24	Hammer Wt	14	10 lbs											
Date Con	npleted	7/29/24	Hammer Drop		30 in.											
Boring M	ethod	HSA	Spoon Sampler	OD	2 in.							IE	SIDA	IA		
Driller	D. McV	/herter	Rig Type C	ME 55 AT	v						5	jth	2	t)		
								e	aphics Sraphics	iter	enetratio ows/foot	onfined /e Streng	etromete	ontent % eight (pc:		
STRATA		SOIL CL	ASSIFICATION			C n	ole	ole Typ	oler Gr very G	nd Wa	lard P N - blo	f Unco pressiv	f et Pen	ure Co Init W	arks	
ELEV.		SURFA	CE ELEVATION		Strats Depth	Depth Scale	Samp No.	Samp	Sam Reco	Grout	Stanc Test,	Qu-ts Comp	PP-ts Pock	Moisti Dry L	Remé	
			TOPSOIL	ʃ	0.3	-										
		Dro	Nn Sandy CLAV			-		00						10 5		
		ыо	WI Januy OLAT					55	X		0		0.8	12.5		
					4.0											
		Bro	own Silty CLAY			5 -	2	SS	X		12		0.5	16.7		
-			-		7.0					Ţ						
						-	- 3	SS	X		9	2.6	1.5	16.7		
		Gray Silty CL	AY with a Trace of Gra	vel		-	-									
					11.0	10 -	4	SS	X		5	0.8		15.4		
_		End o	f Boring at 11 feet			-										
San	nple Type				Grou	L undwat	er	<u> </u>					Boring	Metho	d	
SS - Driven	Split Spo	— oon Tube			g Drillin	g		Dry ft	<u>t.</u>		F	ISA - H	Iollow S	Stem Au	gers	
CA - Continu	Lous Flig	ht Auger		¥ At Co	mpletio	n		Dry ft	<u>.</u>)C - D		Casing	ni Auyela	
CU - Cutting	IS INIE Tub	e		Ţ After	<u>7.0</u> ho	urs <u>7</u> .	0 ft.				IV	יו - שו		y _	4	
T - Presse A - Continu C - Rock C U - Cutting T - Continu	Join Spor d Shelby Lous Flig Core Is Lous Tub	Tube ht Auger		O Durino	g Drillin mpletic <u>7.0</u> ho	g n urs <u>_7</u> .	0 ft	Dry ft Dry ft	<u>r.</u> <u>t.</u>			SA - H FA - C C - D 1D - N	ontinuc ontinuc Priving (lud Dril	bus Flig Casing ling Pa	ht Augers ht Augers age 1 of	· 1

CLIENT Tri-County School Corporation									BORING # B-101							
PROJECT NAME	Tri-County Scho	ol Improvements	5				_	ALT	& V	VITZIG	FILE <u>#</u>	24IN	10392			
PROJECT LOCATI	ION Wolcott an	nd Remington, IN														
Date Started _ Date Completed	DRILLING and S 7/31/24 1 7/31/24	AMPLING INFORMAT Hammer Wt Hammer Drop	rion 14 3	<mark>10</mark> lbs 30_in.	i.						TE	ST DA	ΓΔ			
Boring Method	HSA	Spoon Sampler O	D	2 in.		[
Driller <u>D. Mc</u>	Wherter	Rig Type <u>CM</u>	IE 55 AT	<u>v</u>			be	raphics Sraphics	ater	⁹ enetration lows/foot	onfined ve Strength	netrometer	ontent % /eight (pcf)			
STRATA	SOIL CLA	SSIFICATION		th	e th	ple	iple Ty	pler G overy (M pur	dard F , N - b	sf Unc	sf <et pei<="" td=""><td>ture C <i>Unit</i> M</td><td>larks</td><td></td></et>	ture C <i>Unit</i> M	larks		
ELEV.	SURFACE	ELEVATION		Strat Dept	Depi Scal	Sam No.	Sam	Sam Rec	Gro	Stan Test	Qu-t Corr	PP-t Pocl	Mois Dry	Rem		
	1	OPSOIL]	0.3	-											
	Brown S	andy Silty CLAY	4.0	-	1	SS	X		15	5.4	4.0	14.2				
	Brown	Sandy CLAY	6.5	5 —	2	SS	X		9	2.1	2.3	16.3				
	Gray	Silty CLAY		9.0	-	3	SS	X		13	3.3	4.5	11.6			
	Gray Silty CLAY	with Weathered Shal	e	12.0	10 -	4	SS	X		9	5.4	4.5	11.3			
						5	SS	X		50/3"						
	Gray W	eathered Shale			20 -	6	SS	X		50/4"						
					25 -	7	SS	X		50/4"						
	End of C	laring at 21 fact		31.0	30 -	8	SS	X		50/3"						
	End of E	oning at on leet														
Sample Type_ SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core CU - Cuttings CT - Continuous Tube					<u>undwat</u> g n	er	<u>Dry ft</u> Dry ft	· · · ·		H C D M	SA - H FA - C C - D ID - M	Boring ollow S ontinuc riving C lud Drill	Metho Item Au Dus Fligl Casing ling Pa	d Igers ht Augers age 1	of 1	

CLIENT Tri-County School Corporation									BORING #B-102						
PROJECT NAM	AE Tri-County Scho	ol Improvement	is I					ALT	& V	VITZIG	FILE <u>#</u>	241	10392		
PROJECT LOC	ATION <u>VVOICOLL AI</u>	ia Remington, in	N												
	DRILLING and S	AMPLING INFORMA		0 "											
Date Started	$\frac{7/31/24}{7/21/24}$	Hammer Wt.	14	in and	6.										
Date Comple	eled <u>1131/24</u>	Hammer Drop	<u></u>	2 in.		r					TE	ST DA	TA		
	McWhortor			<u>∠</u> V											
		nig typ <u>e</u> of		<u> </u>			e	aphics Sraphics	iter	enetration ows/foot	onfined /e Strengt	etrometer	ontent % eight (pcf)		
STRATA	SOIL CLA	SSIFICATION		പ	ب ج	ple	ple Ty	pler Gr	nd Wa	dard P N - bl	sf Unco pressiv	sf tet Pen	ture Co Unit W		arks
ELEV.	SURFACE	ELEVATION		Strat Dept	Dept Scale	Sam No.	Sam	Sam	Grou	Stan Test	Qu-t Com	PP-ts Pock	Moist Dry		Rem
	Т	OPSOIL	/	0.2		-									
	Brown and	Grav Silty CLAY			-	1	SS			5	0.8		24.3		
	Drown and			5 -	2	SS			4		3.0	17.8			
				6.0	-				Ā						
					3	SS	X	0	9	1.6	1.0	13.9			
				10 -	4	SS	X		34		4.5	11.6			
	Gray Silty CLAY	′ with a Trace of Grav	vel												
						5	22			10		4 5	11.0		
					-	5	55	Å		40		4.5	11.0		
				19.0											
	Browr	Wet SAND			20 -	6	SS			35					
				22.0											
	Gray Sa	ndy Silty CLAY		24.0	-										
					25 -	7	SS	Д		70					
	Gray W	eathered Shale													
					30 -	8	SS			50/4"					
	End of E	oring at 31 feet		31.0	-			А							
SS - Driven Spl ST - Pressed S CA - Continuou RC - Rock Core CU - Cuttings	○ During	<u>Grou</u> Drillin npletio	<u>undwat</u> g n	<u>er_</u>	<u>7.5 ft</u> 7.0 ft	- - -		H C D M	SA - H FA - C C - D ID - M	Boring ollow S ontinuc riving C lud Dril	<u>i Metho</u> Stem Au Dus Fligl Casing ling	<u>d</u> Igers ht Augers			
CT - Continuou	s Tube												Pa	age 1	of 1

CLIENT Tri-County School Corporation									BORING #B-103							
PROJECT N	NAME Tri-Co	ounty Schoo	I Improvement	S					ALT	8 V	VITZIG	FILE <u>#</u>	241	10392		
PROJECT L		Wolcott and	Remington, IN	N				_								
Date Sta	DRIL Irted <u>7/31</u>	LLING and SAM / 24 /24	IPLING INFORMA Hammer Wt	ATION 14	<mark>10</mark> lbs	s.										
Boring M	Inthod HSA		Spoon Sampler (<u>י</u> חר	2 in							TE	ST DA	ΓA		
Driller	D McWherte	<u>è</u> r	Rig Type CI	ME 55 AT	<u>~</u> """ V						_	ے ا				
					<u> </u>		1	ed	iraphics Graphics	ater	^{>} enetratior lows/foot	onfined ive Strengt	netrometei	ontent % /eight (pcf)		
STRATA		SOIL CLASS	IFICATION		.	c .	e	ole Ty	oler G very (N pu	lard F N - bl	f Unc	f et Per	ure C Init M	arks	
ELEV.		SURFACE E	LEVATION		Strata Depth	Dept [†] Scale	Samp No.	Samp	Samp Reco	Groui	Stanc Test,	Qu-ts Comp	PP-ts Pock	Moisti Dry L	Rema	
-		ТО	PSOIL	ſ	0.3	-										
					- 1	SS	X		9		3.0	15.0				
- 			, , .	7 0	5 - -	2	SS	X		5	0.4	0.8	20.8			
- 	Gra	ay Silty CLAY w	rith a Trace of Gra	vel	10.0	- - - -	3	SS	X	0	16	1.2	1.3	13.9		
		Grav Wea	thered Shale		10.0	10 — - - - - -	4	SS	X		50/2"					
					16.0	- - 15 -	5	ss	X		50/5"					
		End of Bor	ing at 16 feet													
Sar SS - Driven ST - Presse CA - Contin RC - Rock (CU - Cutting CT - Contin	<u>nple Type</u> Split Spoon ed Shelby Tube uous Flight Aug Core gs uous Tube	er		O During ⊋ At Cor	<u>Grou</u> Drillin mpletio	undwat g n	<u>er</u>	<u>9.0 ft</u> ft	<u> </u> <u>-</u> <u>-</u>	<u> </u>	H C D N	SA - H FA - C C - D D - M	Boring ollow S ontinuc riving C lud Drill	Metho tem Au bus Fligi Casing ling Pa	d Igers ht Augers age 1 of	· 1

Alt & Witzig Engineering, Inc.

CLIENT	Fri-Cou	nty School Co	orporation						BOF	RING	G#		B-2	01	
PROJECT	NAME	Fri-County Sc	hool Improvements						ALT	· & V	VITZIG	FILE <u>#</u>	24IN	10392	
PROJECT L		N Wolcott	and Remington, IN												
		DRILLING and	SAMPLING INFORMATIO	N											
Date Sta	irted	7/30/24	Hammer Wt.	140	_lbs	6.									
Date Cor	mpleted	7/30/24	Hammer Drop	30	in.							TE	ST DA	ГА	
Boring M	lethod	HSA	Spoon Sampler OD	2	_in.										
Driller	D. McV	Vherter	Rig Type CME	<u>55 ATV</u>					~		t o	lgth	ter	ć,	
	1							ype	Braphics Graphics	/ater	Penetrati olows/foo	confined sive Strer	netrome	Sontent % Veight (p	
STRATA		SOIL CL	ASSIFICATION		" –	5 0	e	le T	verv	y bn	N-t	f Un	f et Pe	ure C Init V	arks
ELEV.		SURFA	CE ELEVATION	-to-to	Depth	Dept l Scale	Samp No.	Samp	Samp Reco	Grou	Stano Test,	Qu-ts Comp	PP-ts Pock	Moisti Dry (Rema
-	× \		TOPSOIL	/	0.4	-									
- - - -		Dark Brown Sa	ndy Silty CLAY with Gravel			- 	1	SS	X		2				2 Attempts, No Recovery
			(FILL)		6.0	5 -	2	ss	X		10		2.5	25.2	
						-	3	ss	X		13	3.3		13.8	
		Brown and	Gray Sandy Silty CLAY			10 -	4	SS	X		23		4.5	15.1	
					14.0		-			⊻					
		Gi	ray Silty CLAY			15	5	SS	X		14		4.5	12.2	
					19.0	20 -	6	SS	X	0	14		2.0	18.8	
			Gray SILT	:	24.0	- - - -									
		Gi	ray Silty CLAY		26.0	25 -	7	ss	X		15	5.4	4.5	10.3	
		End o	f Boring at 26 feet												
SS - Driven ST - Presse CA - Contin RC - Rock (CU - Cutting	mple Type Split Spo d Shelby luous Flig Core gs	e oon r Tube ht Auger	O Ţ	_ During [At Comp	<u>Grou</u> Drillin pletio	undwat g n	er	<u>19.0 f</u> 12.5 fi	<u>t.</u> <u>t.</u>	1	H C D M	 SA - H FA - C C - D D - M	Boring Iollow S Continuc Priving C Iud Drill	Metho tem Au bus Flig Casing ling	l lgers ht Augers

CT - Continuous Tube

CLIENT Tri-County School Corporation									BORING # B-202							
	Fri-County Sch	ool Improvemen	nts				ALT	& V	VITZIG	FILE <u>#</u>	24IN	10392				
PROJECT LOCATIO	N Wolcott a	nd Remington, I	IN													
Date Started Date Completed	DRILLING and S 7/30/24 7/30/24	SAMPLING INFORM _ Hammer Wt _ Hammer Drop	1ATION 14	10 _lbs 30_in.	S.					TE	ST DA	TA				
Boring Method	HSA	_ Spoon Sampler	OD	2 in.							SIDA					
Driller D. McV	Vherter	Rig Type C	ME 55 AT	V					ç	ft	5	¢				
						/be	àraphics Graphics	ater	^{>} enetratio	confined ive Streng	netromete	content % Veight (pc				
STRATA	SOIL CLA	SSIFICATION			e a le	ole T)	very -	M pu	lard F N - b	f Und oress	f et Pe	ure C Init V		arks		
ELEV.	SURFAC	E ELEVATION		Strata Depth	Depth Scale Samp	Samp	Samp Reco	Grou	Stano Test,	Qu-ts Comp	PP-ts Pock	Moisti Dry L		Lenger		
		TOPSOIL	[0.4	-											
	Brown (P	n Sandy CLAY Possible Fill)		4.0		ss	X		7	2.1	2.5	18.1				
	Browr		6.0	5 _ 2	ss	X		6								
				3	ss	X		8	3.3		14.8					
						ss	X		8	3.1		15.2				
	Gra	y Silty CLAY				ss	X		17	4.7		16.0				
					20 - 6	ss	X		17	5.4	4.5	10.9				
	(Gray SILT		24.0	25 7	ss	X		8	3.3		23.5				
	End of	Boring at 31 feet		31.0	30 - 8	SS	X		11	2.3	2.5	18.9				
Sample Type SS - Driven Split Spo ST - Pressed Shelby CA - Continuous Flig RC - Rock Core CU - Cuttings CT - Continuous Tub	e oon 7 Tube ht Auger pe		O Durinţ ⊈ At Co	<u>Grou</u> g Drillin mpletio	undwater g n	Dry 1 Dry 1	<u>.</u> <u>7.</u> <u>7.</u>		H C D N	isa - H Fa - C C - D 1D - N	Boring Iollow S Continuc Priving C Iud Drill	Metho Stem Au Dus Fligl Casing ling Pa	d_ gers ht Augers age 1	of 1		

CLIENT Tri-County School Corporation	BORING # B-203											
PROJECT NAME Tri-County School Improv	rements			_	ALT	& V	VITZIG	FILE <u>#</u>	241	10392		
PROJECT LOCATION Wolcott and Reming	iton, IN											
DRILLING and SAMPLING IN Date Started 7/30/24 Hammer	IFORMATION Wt14	<u>0</u> lbs										
Date Completed 7/30/24 Hammer	Drop3	<u>0</u> in.						TE	ST DA	ГА		
Boring Method HSA Spoon Sa	ampler OD	<u>2</u> in.										
Driller <u>D. McWherter</u> Rig Type		<u>v</u>		be	traphics Graphics	ater	^o enetration lows/foot	confined ive Strength	netrometer	ontent % /eight (pcf)		
STRATA SOIL CLASSIFICATION	N		e a le	ole Ty	oler G very (M pu	ard F N - b	f Und oress	et Pe	ure C Init N	arks	
ELEV. SURFACE ELEVATION	N	Strata Depth	Depth Scale Samp No.	Samp	Samp Reco	Groun	Stanc Test,	Qu-ts Comp	PP-ts Pocke	Moistu Dry L	Rems	
	ſ	0.3	-									
Dark Brown Sandy CL (Possible Fill)	_AY	4.0	- 1	SS	X		4	0.9		19.1		
Brown Silty CLAY			5 _ 2	SS	X		16		4.5	16.1		
		7.0	3	SS	X		14	5.4	4.5	7.7		
				SS	Χ	¥	13	5.0	4.5	12.9		
Gray Sandy Silty CL	ΑY	10.0	15 5	SS	X	0	9	3.3		10.4		
		19.0	20 - 6	SS	X		14		2.3	20.4		
Gray SILT			25 - 7	SS	X		10			26.3		
End of Boring at 31 fe	eet	31.0	30 - 8	SS	X		8	3.5		24.5		
Sample Type SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core CU - Cuttings CT - Continuous Tube	⊙ During ⊈ At Com <u>▼</u> After _	<u>Grou</u> Drilling npletion <u>3.5</u> hou	<u>indwater</u> g <u>1</u> n <u>11.5 ft.</u>	14.0 f 12.0 f	<u> </u> <u>t.</u> <u>t.</u>	<u> </u>	H C D W	SA - H FA - C C - D ID - M	Boring ollow S continuc riving C lud Drill	Method item Au bus Fligh Casing ling	d gers nt Augers	of 1

CLIENT Tri-	County Sc	hool Corpo	ration						BOF	RING	G #		B-2	04		
PROJECT NAM	ME_Tri-Co	unty Schoo	l Improvem	ents					ALT	& V	VITZIG	FILE <u>#</u>	24IN	0392		
PROJECT LOC		Volcott and	Remingtor	n, IN												
Date Started	DRILI d <u>7/31/</u>	LING and SAM 24	/IPLING INFOR Hammer Wt.		<u>140</u> lbs	i.										
Date Compl	eted <u>11311.</u>	<u> 24 </u>	Hammer Dro	p	<u> </u>							TE	ST DAT	A		
Boring Meth	Mo\A/horto		Spoon Samp		<u> </u>							_				
Driller <u>D</u> .	wicovnerte	I	Rig Type					e	aphics traphics	ter	enetration ows/foot	onfined /e Strength	etrometer	ntent % eight (pcf)		
STRATA		SOIL CLASS	IFICATION		@	ч е	ple	ple Typ	pler Gr very G	nd Wa	dard P N - blo	sf Unco pressiv	sf iet Pen	ure Co Unit W	arks	
ELEV.		SURFACE E	LEVATION		Strata Depth	Deptl Scale	Sam No.	Sam	Sam	Grou	Stano Test,	Qu-ts Com	PP-ts Pock	Moist Dry (Rem	
		Brown Silty C	CLAY with Bric	k	4.0	-	- 1	SS	X		4			16.4		
		Brown S	andy CLAY		7.0	5	- 2	SS SS	X V		7 15	1.2	1.3 4.5	16.5 17.7		
	Br	rown and Gray	[,] Sandy Silty C	LAY	11.0	- - - 10 —	4	SS	X		19	5.4	4.5	13.9		
		End of Bor	ing at 11 feet					•								
Sample	e Type				Grou	undwat	er		. <u></u>		ц	 ۵۵ ـ ۲	Boring	Method	d	
ST - Pressed S CA - Continuou RC - Rock Con CU - Cuttings CT - Continuou	Shelby Tube us Flight Auge e us Tube	r		∑ At	Completio	9 <u> </u>		Dry ft	 k 		C D M	FA - C C - D ID - M	ontinuo riving C ud Drill	us Fligh asing ing Pa	nt Augers	of 1

MATERIAL GRAPHICS LEGEND

CL-ML: USCS Low Plasticity

CL: USCS Low Plasticity Sandy Clay

SC: USCS Clayey Sand

FILL: Fill (made ground)

SHALE: Shale

SAMPLER SYMBOLS

ML: USCS Silt

SP: USCS Poorly-graded Sand

TOPSOIL

SOIL PROPERTY SYMBOLS

N: Standard "N" penetration value. Blows per foot of a 140-lb hammer falling 30" on a 2" O.D. split-spoon. Qu: Unconfined Compressive Strength, tsf PP:Pocket Penetrometer, tsf LL: Liquid Limit, % PL: Plastic Limit, % PI: Plasticity Index, %

DRILLING AND SAMPLING SYMBOLS

GROUNDWATER SYMBOLS

• Apparent water level noted while drilling.

 ∠ Apparent water level noted upon completion.

Apparent water level noted upon delayed time.

RELATIVE DENSITY & CONSISTANCY CLASSIFICATION (NON-COHESIVE SOILS)

<u>TERM</u>	
Very Loose	
Loose	
Medium Dense	
Dense	
Very Dense	

BLOWS PER FOOT 0 - 5 6 - 10 11 - 30 31 - 50 >51

SS: Split Spoon

RELATIVE DENSITY & CONSISTANCY CLASSIFICATION (COHESIVE SOILS)

<u>TERM</u>	<u>BLOWS PER FOOT</u>
Very Soft	0 - 3
Śoft	4 - 5
Medium Stiff	6 - 10
Stiff	11 - 15
Very Stiff	16 - 30
Hard	>31

Alt & Witzig

Telephone: Fax:

GENERAL NOTES

Project: Tri-County School Improvements Location: Wolcott and Remington, IN Number: 24IN0392

NOTES - PROJECT SPECIFIC 24IN0392 GINT.GPJ US EVAL.GDT 8/16/24

APPENDIX B

Seismic Design Parameters Custom Soil Resource Reports for White County and Jasper County, Indiana

OSHPD

24IN0392 - Intermediate School

Latitude, Longitude: 40.760768, -87.044578

Goog	e	NRaymond St NDavis St NDavis St Intermediate School W North St Wolcott Cafe & Catering St St St St St St St St St St St St St
Date		8/5/2024, 2:06:18 PM
Design Coo	le Referenc	ce Document IBC-2015
Risk Catego	ory	
Site Class		C - Very Dense Soil and Soft Rock
Туре	Value	Description
SS	0.128	MCE _R ground motion. (for 0.2 second period)
S ₁	0.073	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.153	Site-modified spectral acceleration value
S _{M1}	0.124	Site-modified spectral acceleration value
S _{DS}	0.102	Numeric seismic design value at 0.2 second SA
S _{D1}	0.083	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	В	Seismic design category
Fa	1.2	Site amplification factor at 0.2 second
Fv	1.7	Site amplification factor at 1.0 second
PGA	0.058	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.07	Site modified peak ground acceleration
ΤL	12	Long-period transition period in seconds
SsRT	0.128	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.141	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.073	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.086	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.6	Factored deterministic acceleration value. (Peak Ground Acceleration)

Туре	Value	Description
PGA _{UH}	0.058	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C _{RS}	0.905	Mapped value of the risk coefficient at short periods
C _{R1}	0.854	Mapped value of the risk coefficient at a period of 1 s
CV		Vertical coefficient

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>(OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

OSHPD

24IN0392 - JR/SR High School

Latitude, Longitude: 40.734389, -87.085329

Goog	le	Tri-County Junior-Senior High School
Date		8/5/2024, 2:08:02 PM
Design Co	de Referenc	BC-2015
Risk Categ	ory	III
Site Class		C - Very Dense Soil and Soft Rock
Туре	Value	Description
SS	0.13	MCE _R ground motion. (for 0.2 second period)
S ₁	0.074	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.155	Site-modified spectral acceleration value
S _{M1}	0.126	Site-modified spectral acceleration value
S _{DS}	0.104	Numeric seismic design value at 0.2 second SA
S _{D1}	0.084	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	В	Seismic design category
F _a	1.2	Site amplification factor at 0.2 second
Fv	1.7	Site amplification factor at 1.0 second
PGA	0.059	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.071	Site modified peak ground acceleration
ΤL	12	Long-period transition period in seconds
SsRT	0.13	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.143	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.074	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.087	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.6	Factored deterministic acceleration value. (Peak Ground Acceleration)

Туре	Value	Description
PGA _{UH}	0.059	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C _{RS}	0.905	Mapped value of the risk coefficient at short periods
C _{R1}	0.854	Mapped value of the risk coefficient at a period of 1 s
CV		Vertical coefficient

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>(OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

USGS web services were down for some period of time and as a result this tool wasn't operational, resulting in *timeout* error. USGS web services are now operational so this tool should work as expected.

OSHPD

24IN0392 - Primary School

Latitude, Longitude: 40.762504, -87.145885

	EM	innesota St Tri-County Primer School					
Mic	higan S	Street Antiques 😂					
		E Michigan St					
		Z					
R	Bob &	Connie's					
	cotaur	E North St					
Goog	e	Map data ©202					
Date		8/16/2024, 11:10:21 AM					
Design Cod	le Referenc	ce Document IBC-2015					
Risk Catego	ory	III					
Site Class		C - Very Dense Soil and Soft Rock					
Туре	Value	Description					
SS	0.13	MCE _R ground motion. (for 0.2 second period)					
S ₁	0.074	MCE _R ground motion. (for 1.0s period)					
S _{MS}	0.156	Site-modified spectral acceleration value					
S _{M1}	0.125	Site-modified spectral acceleration value					
S _{DS}	0.104	Numeric seismic design value at 0.2 second SA					
S _{D1}	0.084	Numeric seismic design value at 1.0 second SA					
Туре	Value	Description					
SDC	В	Seismic design category					
Fa	1.2	Site amplification factor at 0.2 second					
Fv	1.7	Site amplification factor at 1.0 second					
PGA	0.06	MCE _G peak ground acceleration					
F _{PGA}	1.2	Site amplification factor at PGA					
PGA _M	0.071	Site modified peak ground acceleration					
TL	12	Long-period transition period in seconds					
SsRT	0.13	Probabilistic risk-targeted ground motion. (0.2 second)					
SsUH	0.143	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration					
SsD	1.5	Factored deterministic acceleration value. (0.2 second)					
S1RT	0.074	Probabilistic risk-targeted ground motion. (1.0 second)					
S1UH	0.086	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.					
S1D	0.6	Factored deterministic acceleration value. (1.0 second)					
PGAd	0.6	Factored deterministic acceleration value. (Peak Ground Acceleration)					

Туре	Value	Description
PGA _{UH}	0.06	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
C _{RS}	0.905	Mapped value of the risk coefficient at short periods
C _{R1}	0.854	Mapped value of the risk coefficient at a period of 1 s
CV		Vertical coefficient

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>(OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

United States Department of Agriculture

Natural Resources

Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for White County, Indiana

24IN0392 - Intermediate School

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	
Map Unit Descriptions	11
White County, Indiana	
CnA—Conover loam, 0 to 1 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION	
Area of Int	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at	
	Area of Interest (AOI)	٥	Stony Spot	1:20,000.	
Soils		0	Very Stony Spot	Warning: Soil Man may not be valid at this scale	
	Soil Map Unit Polygons	Ŷ	Wet Spot	Warning. Con Map may not be valid at and board.	
~	Soil Map Unit Lines	~	Other	Enlargement of maps beyond the scale of mapping can cause	
	Soil Map Unit Points	-	Special Line Features	line placement. The maps do not show the small areas of	
Special	Point Features	Water Fea	tures	contrasting soils that could have been shown at a more detailed	
<u>ه</u>	Blowout	~	Streams and Canals	Scale.	
X	Borrow Pit	Transport	ation	Please rely on the bar scale on each map sheet for map	
×	Clay Spot	+++	Rails	measurements.	
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service	
X	Gravel Pit	~	US Routes	Web Soil Survey URL:	
0 0 0	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)	
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator	
A.	Lava Flow	Backgrou	Ind Aerial Photography	projection, which preserves direction and shape but distorts	
عله	Marsh or swamp	March 1		Albers equal-area conic projection, should be used if more	
R	Mine or Quarry			accurate calculations of distance or area are required.	
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as	
0	Perennial Water			of the version date(s) listed below.	
\vee	Rock Outcrop			Soil Survey Area: White County, Indiana	
+	Saline Spot			Survey Area Data: Version 28, Sep 1, 2023	
	Sandy Spot			Soil map units are labeled (as space allows) for map scales	
-	Severely Eroded Spot			1:50,000 or larger.	
6	Sinkhole			Data(a) carial imagaa wara photographad: Jup 16, 2022 Jup	
\$	Slide or Slip			27, 2022	
e B	Sodic Spot				
שק	·			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CnA	Conover loam, 0 to 1 percent slopes	2.1	100.0%
Totals for Area of Interest		2.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

White County, Indiana

CnA—Conover loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 5fds Elevation: 580 to 1,540 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 170 to 185 days Farmland classification: Prime farmland if drained

Map Unit Composition

Conover and similar soils: 70 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Conover

Setting

Landform: Till plains Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy till

Typical profile

Ap - 0 *to* 11 *inches:* loam *Bt* - 11 *to* 27 *inches:* clay loam *Cg* - 27 *to* 60 *inches:* loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.20 in/hr)
Depth to water table: About 6 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: R111XC006IN - Flat Glacial Ridge Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation) Hydric soil rating: No

Minor Components

Crosier

Percent of map unit: 15 percent Landform: Outwash plains, till plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Brookston

Percent of map unit: 10 percent Landform: Depressions on outwash plains, depressions on till plains Landform position (two-dimensional): Footslope, toeslope Down-slope shape: Linear Across-slope shape: Concave Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation) Hydric soil rating: Yes

Baugo

Percent of map unit: 5 percent Landform: Till plains, lake plains Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for White County, Indiana

24IN0392 - JR/SR High School

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
White County, Indiana	13
CnA—Conover loam, 0 to 1 percent slopes	13
Wo—Wolcott clay loam	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Int	terest (AOI)	33	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	٥	Stony Spot	1:20,000.
Soils		0	Very Stony Spot	Warning: Soil Man may not be valid at this scale
	Soil Map Unit Polygons	Ŷ	Wet Spot	Warning. Con Map may not be valid at and board.
~	Soil Map Unit Lines	~	Other	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	-	Special Line Features	line placement. The maps do not show the small areas of
Special	Point Features	Water Fea	tures	contrasting soils that could have been shown at a more detailed
<u>ه</u>	Blowout	~	Streams and Canals	Scale.
X	Borrow Pit	Transport	ation	Please rely on the bar scale on each map sheet for map
×	Clay Spot	+++	Rails	measurements.
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravel Pit	~	US Routes	Web Soil Survey URL:
0 0 0	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
A.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts
عله	Marsh or swamp	Contraction of the second	Aerial Photography	Albers equal-area conic projection, should be used if more
R	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\vee	Rock Outcrop			Soil Survey Area: White County, Indiana
+	Saline Spot			Survey Area Data: Version 28, Sep 1, 2023
	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
6	Sinkhole			Data(a) carial imagaa wara photographad: Jup 16, 2022 Jup
\$	Slide or Slip			27, 2022
e B	Sodic Spot			
שק	·			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
CnA	Conover loam, 0 to 1 percent slopes	4.5	94.3%	
Wo	Wolcott clay loam	0.3	5.7%	
Totals for Area of Interest		4.8	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

White County, Indiana

CnA—Conover loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 5fds Elevation: 580 to 1,540 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 170 to 185 days Farmland classification: Prime farmland if drained

Map Unit Composition

Conover and similar soils: 70 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Conover

Setting

Landform: Till plains Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy till

Typical profile

Ap - 0 *to* 11 *inches:* loam *Bt* - 11 *to* 27 *inches:* clay loam *Cg* - 27 *to* 60 *inches:* loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.20 in/hr)
Depth to water table: About 6 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: R111XC006IN - Flat Glacial Ridge Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation) Hydric soil rating: No

Minor Components

Crosier

Percent of map unit: 15 percent Landform: Outwash plains, till plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Brookston

Percent of map unit: 10 percent Landform: Depressions on outwash plains, depressions on till plains Landform position (two-dimensional): Footslope, toeslope Down-slope shape: Linear Across-slope shape: Concave Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation) Hydric soil rating: Yes

Baugo

Percent of map unit: 5 percent Landform: Till plains, lake plains Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Trees/Timber (Woody Vegetation) Hydric soil rating: No

Wo—Wolcott clay loam

Map Unit Setting

National map unit symbol: 5ffy Elevation: 520 to 770 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 170 to 185 days Farmland classification: Prime farmland if drained

Map Unit Composition

Wolcott and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Wolcott

Setting

Landform: Depressions on till plains Landform position (two-dimensional): Footslope *Down-slope shape:* Concave *Across-slope shape:* Linear *Parent material:* Loamy till

Typical profile

H1 - 0 to 15 inches: clay loam *H2 - 15 to 47 inches:* clay loam *H3 - 47 to 60 inches:* loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: 30 to 60 inches to densic material
Drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.20 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 40 percent
Available water supply, 0 to 60 inches: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B/D Ecological site: R111XC005IN - Glacial Depression Other vegetative classification: Grass/Prairie (Herbaceous Vegetation) Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Jasper County, Indiana

24IN0392 - Primary School

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Jasper County, Indiana	13
CoB—Corwin loam, moderately permeable, 1 to 3 percent slopes	13
So—Sloan silt loam, frequently flooded, undrained	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND)	MAP INFORMATION	
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:15,800.	
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features	© △	Very Stony Spot Wet Spot Other Special Line Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed	
0 X X	Blowout Borrow Pit Clay Spot	Water Fea	atures Streams and Canals tation Rails	scale. Please rely on the bar scale on each map sheet for map measurements.	
◇ ¥	Closed Depression Gravel Pit Gravelly Spot	% %	Interstate Highways US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
0 A &	Landfill Lava Flow Marsh or swamp Mine or Quarry	Backgrou	Local Roads Ind Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	
© 0 ~	Miscellaneous Water Perennial Water Rock Outcrop			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	
+ :: =	Saline Spot Sandy Spot Severely Eroded Spot			Survey Area Data: Version 24, Sep 1, 2023 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
\$ \$ Ø	Sinkhole Slide or Slip Sodic Spot			Date(s) aerial images were photographed: Jun 16, 2022—Jun 27, 2022 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background	
				imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
СоВ	Corwin loam, moderately permeable, 1 to 3 percent slopes	1.3	60.7%	
So	Sloan silt loam, frequently flooded, undrained	0.8	39.3%	
Totals for Area of Interest		2.1	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the

development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Jasper County, Indiana

CoB—Corwin loam, moderately permeable, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 5dws Elevation: 620 to 770 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 170 to 185 days Farmland classification: All areas are prime farmland

Map Unit Composition

Corwin and similar soils: 90 percent Minor components: 6 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Corwin

Setting

Landform: Recessionial moraines, ground moraines Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy till

Typical profile

H1 - 0 to 13 inches: loam *H2 - 13 to 35 inches:* clay loam *H3 - 35 to 40 inches:* loam *H4 - 40 to 60 inches:* loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: 20 to 55 inches to densic material
Drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: R111XC006IN - Flat Glacial Ridge Other vegetative classification: Grass/Prairie (Herbaceous Vegetation) Hydric soil rating: No

Minor Components

Reddick

Percent of map unit: 3 percent Landform: Depressions Hydric soil rating: Yes

Wolcott

Percent of map unit: 3 percent Landform: Depressions Other vegetative classification: Grass/Prairie (Herbaceous Vegetation) Hydric soil rating: Yes

So-Sloan silt loam, frequently flooded, undrained

Map Unit Setting

National map unit symbol: 5dy2 Elevation: 620 to 770 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 170 to 185 days Farmland classification: Not prime farmland

Map Unit Composition

Sloan, undrained, and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Sloan, Undrained

Setting

Landform: Flood plains Landform position (two-dimensional): Footslope Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy alluvium

Typical profile

H1 - 0 to 6 inches: silt loam
H2 - 6 to 40 inches: clay loam
H3 - 40 to 60 inches: stratified fine sandy loam to silt loam to fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: Frequent

Frequency of ponding: None *Calcium carbonate, maximum content:* 30 percent *Available water supply, 0 to 60 inches:* High (about 10.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F111XC014IN - Wet Floodplain Other vegetative classification: Mixed/Transitional (Mixed Native Vegetation) Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

ADDENDUM ONE

Addendum One (AD.01) to the drawings and specifications prepared by Gibraltar Design for Tri-County Jr/Sr High School Additions and Renovations for Tri-County School Corporation, Wolcott, Indiana.

All Contractors bidding on this project shall read all of the items covered below and shall comply with all of the requirements as set forth, including any necessary refinements or additions generated by this Addendum and required by the intent of the original contract documents. All Contractors shall acknowledge on their bid form that they have received this Addendum and include the appropriate content of same within their bid proposal.

SPECIFICATIONS

1. Specification Section 22 40 00

Plumbing Fixtures

- A. Revise Trench Drains to read:
 - "A. (P-4) Trench Drain 6" wide, pre-sloped modular section trench system.
 - 1. Channel construction of high-density polyethylene structural composite drain channel.
 - 2. Bottom of channel shall have a constant slope and shall have a radius for smooth flow and ease of cleaning.
 - 3. The drain system shall be complete with heavy duty frame, rigid mechanical interlocking joints, anchor studs and combination anchor tabs/leveling devices.
 - 4. Grates shall be special duty, Class E rated, slotted ductile cast iron suitable for dynamic loads."
- B. Add Paragraph 2.3 O, 2.3 P., and 2.3 Q. to read:

"O. TRENCH DRAINS

- 1. Zurn
- 2. Jay R. Smith
- P. EMERGENCY SHOWER AND EYE WASH STATION:
 - 1. Bradley
 - 2. Guardian
 - 3. Haws
- Q. WASH FOUNTAIN:
 - 1. Bradley
 - 2. Acorn
- Willoughby
 Specification Section 23 81 26

Split Air Conditioning Units

A. Paragraph 2.1 Manufacturers: Add "York" to list of acceptable manufacturers.

DRAWINGS

Refer to Revised Full-Size Drawings included in this Addendum for revisions (unless noted that no drawing is attached).

3. Sheet G-101 (No Drawing Attached)

A. Add sheet A-404 Stair Plan, Sections, and Details to Sheet Index

4. Sheet S-204 (No Drawing Attached)

- A. Revise Keynote 3 to refer to detail 13/S-402 in lieu of 8/S-402.
- B. Revise location of new door and masonry lintel into Storage D-105 per architectural drawings in this addendum.

5. Sheet S-402

A. Detail 13 added.

6. Sheet AD103

A. Revise location of masonry wall to be removed for new door opening into Storage D-105.

7. Sheet A-103

A. Revise location of new door into Storage D-105.

8. Sheet A-404

A. New sheet issued for metal stair sections and details.

9. Sheet A-820

A. Revise ACT 3.

10. Sheet P-204

- A. Revised plumbing to match furnace FURN-1 location.
- B. Revised natural gas piping to match furnace FURN-1 and UH-5 locations.
- C. Added floor drain for FURN-1 condensate disposal.

11. Sheet M-104

- A. Revised location of furnace FURN-1 to clear shelving units.
- B. Revised supply duct routing due to furnace relocation and addition of utility closet.
- C. Revised UH-5 location to improve access into backpack storage area.

12. Sheet M-601

- A. Added 35K short circuit rating requirement to Rooftop Air Handling Unit Schedule notes.
- 13. Sheets A-703, A-803, A-903, M-103, P-103, E-103, E-203, and T-103 (No Drawings Attached)
 - A. Revise location of new door into Storage D-105 per Architectural drawings in this addendum.

Pages 1 through 3, inclusive, and eight (8) Full-Size Drawings, constitute the total makeup of **Addendum One**.

P. Brigo Joseph -120 Tr County SC - Jr-Sr High School Addition and Renovations\Specs\Addendum One\AD02 - 24-120.docx